読者です 読者をやめる 読者になる 読者になる

ゆとりデータサイエンティストの諸々所感

データ分析会社で研究開発をしている、ゆとり世代データサイエンティストが学んだ内容や最新トピックについて諸々語る予定

最適化超入門

SlideShareだけでなく、ブログの記事にもすることに

先日、TokyoWebMning #40にて最適化について熱く語ってきました。

個人的にも結構やりきった感があり、網羅的に最適化手法を紹介出来たと思います。

その後飲んだ研究室の同期には『難しすぎる』と言われましたが、どうなんでしょう・・・

一応はてブが400を超えており、大丈夫だったと信じたい。

というか、最適化の話題ではてブこんなに頂けるのは予想外でした。ありがとうございます!

はてなブックマーク - 最適化超入門

PyData Tokyoの方にもお声掛け頂いたのでまたどこかでお話出来ればと思ってます。
次はセクシー女優みたいにしょーもない話にする予定ですw  
 
 

今回は修士卒の人間が最適化の入門資料を作る事のは、おこがましいと戦々恐々していたのですが、 Twitter上では概ね好評であり、安心しております。

NIIの前原先生からもお褒め頂いたので、最適化チートシート流行らそうと思いますw

f:id:tkm2261:20141206141012p:plain

あと、阪大の梅谷先生からご指摘があり、CPLEXは出来る子とのことです。

CPLEXはコア単位課金でお高いため、企業ではほぼGurobi一択な現状なので誇大に書きすぎたようです。
あとSOS制約の入った問題が高速だったため、うちの会社ではCPLEXからGurobiに移行しました。

研究で使われるかたはどちらもフリーなので、mpsファイルでも吐いて検証してみることをオススメします。

ちなみに、Gurobiは先日バージョン6.0がリリースされ、イベントに参加してきました。

Company - News - Highlights of Gurobi Optimizer 6.0

目玉としては、分散MIPと区分線形関数でした。
MIPも分散する時代になったか・・・といった感じです

区分線形関数もSOS制約でいちいち書かなくて済むので、応用事例が増えることが期待出来そうです。

合わせてBixby氏からNFLの試合日程最適化の話があり、非常に興味深い話でした。 2014年から木曜日に試合を行うことなり、モデルが異常に難しくなったようです。

新日鉄住金ソリューションズの山本さんからもJリーグの日程最適化の話があり、
うちの会社でもスポーツ系やりたい( ´Д`) 

長くなりましたが、益々最適化が流行ればいいな!と思う次第です。